
Contextualization of regulatory processes in programming learning

Phases, Areas and Processes for Regulated Learning/Contextualization in Programming

Type of
Regulation

Areas for Regulation

phases Cognitive /
Socio-cognitive

Motivation/Affectio
n

Behavior Context

Phase 1.
Forecasting,
planning and

activation

Planning
before Coding

Self-regulation setting goal

Evaluating prior
knowledge about

content

activating
metacognition

Detecting important
problem items
before coding.

Drawing the
solution before

coding.

Using diagrams to
explain solution
design and its

connections to code.

Practicing and
understanding the

fundamentals before
starting to program.

Preparing to reach the
goal

judging self-efficacy

Realizing the
difficulty of the task

Realizing the value of
the task

activating interest

Viewing Obstacles
from a Positive
Perspective on
Programming

Planning time and
effort

Planning
self-monitoring of

behavior.

Using Kanban for
scheduling task

planning.

Using Kanban for
self-assessment of

theoretical and
practical

programming content.

realizing the task

perceiving the
context

Establishing
strategies for
executing and

monitoring
programming

tasks.

co-regulation Establishing shared
understandings of

task demands,
negotiating problem
meaning, and setting

goals.

Interacting with team
members about

actions to be taken.

Establishing a
shared

understanding of
programming

concepts.

Anticipating good
relations in the group.

Encouraging future
participation and

interactions.

Use motivating
phrases in a good

mood in
programming.

Creating workflows to
achieve goals, including

setting timelines.

Negotiating the division
of labor

Using Scrum to plan
collaborative

programming tasks.

Negotiating and
describing roles
according to the
student's profile.

Organizing the
team

(communication
protocol/rules of

engagement).

Choosing
groupware

technologies for
programming.

Planning a
collaborative
programming

script.

Phase 2.
Monitoring

Monitoring
during Coding

and Testing

Self-regulation Monitoring cognition
and mete-cognition

Understanding
programming

patterns.

Experiencing
programming

patterns.

Monitoring problem
solving in

programming.

Monitoring of
motivation and affect

Monitoring
motivation in
programming.

Monitoring effort, time
use, need for help

Self-observing behavior

Using Kanban for
monitoring scheduling

tasks.

Monitoring
changing tasks and
context conditions

Monitoring
individual

programming
context.

co-regulation Monitoring shared
understanding.

Monitoring group
motivation for

participation and
interactions.

Tracking group goals
and progress.

Monitoring the
change of functions
and communication

protocols.

https://www.canva.com/design/DAEjnBqkJzc/view
https://www.canva.com/design/DAEtV6Ypa34/BzFj9acIkM_XF-7TwYIt-g/view
https://www.canva.com/design/DAEtV6Ypa34/BzFj9acIkM_XF-7TwYIt-g/view


Monitoring the
general processes of

the group.

Accompanying the
advancement of

knowledge.

Detecting errors and
checking plausibility.

Detecting
socio-cognitive

conflicts in the group.

Understanding
programming

patterns together.

Experiencing
programming

patterns together.

Monitoring
collaborative

problem solving in
programming.

Detecting
socio-emotional
group conflicts.

Keeping track of the
group's commitment

to programming

Using workflows to
monitor the progress of

activities.

Using Scrum to track
collaborative

programming tasks.

Following rules of
engagement.

Monitoring the
context of

collaborative
programming.

Phase 3.
Control

Coding and
Testing

Self-regulation Selecting and
adapting cognitive

strategies for
learning, thinking

Adapting
programming

patterns.

Combining
programming

patterns.

Selecting and
adapting strategies to
manage motivation

and affect.

Reducing Anxiety in
Programming.

Increased/decreased
effort

persisting/giving up

Help seeking behavior

Using Kanban for
Task Management in

Programming

Changing or
renegotiating tasks

Changing or
leaving the context

Acting in the
individual context
of programming.

co-regulation Communicating with
team members about
actions being taken.

Making collaborative
plans to achieve
goals, including

selecting
socio-cognitive

strategies.

Discovering the type
of collaboration.

interaction to solve
the problem along

with the objectives.

Moving forward and
explaining solutions.

Coordination of
socio-cognitive

conflicts.

Tracking the overall
progress of group

solutions.

Facilitating criticism
and building the
perspectives of

others.

Subdividing the
computational

problem.

Analyzing and
building third-party
software artifacts.

Controlling the
quantity and quality

of group participation
and interactions.

Providing feedback
on group

participations and
interactions.

Avoiding and
controlling

socio-emotional
conflicts in the group.

Promoting respect by
criticizing the other's

point of view.

Promoting
participation in
programming.

Developing trust
relationships in
programming.

Seeking teacher help
when a conflict of ideas
fails to reach consensus

Managing workflows.

Using Coding DOJO
(Kata) in introductory

programming.

Using Coding DOJO
(Randori) in
introductory

programming.

Controlling group
roles and

communication
protocols

Providing feedback
on group roles and

communication
protocols.

Analyzing pros
and cons in

programming.

Working in the
context of

collaborative
programming.



Coding together
from past

experiences.

Phase 4.
Reaction and

Reflection

Reflections on
Program
Coding

Self-regulation cognitive judgments

Critical thinking and
metacognition

Learning from
errors and successes

in programming.

affective reactions

Intrinsic and extrinsic
goals, task value,
control beliefs,

self-efficacy and test
anxiety.

Reflecting on
student motivation
in programming.

choice behavior

Effort regulation
Seeking help Study
time/environment

Using Kanban to
reflect on scheduling

tasks.

Reflecting on the pros
and cons of Kanban

for individual
progress in
scheduling.

Assessment of tasks

Context assessment
Peer learning, study
time/environment

Reflecting on pros
and cons in

programming.

Reflecting on the
context of
individual

programming.

co-regulation Reflecting and
repairing shared
understanding.

Evaluating current
joint solutions.

Reflecting on
different points of

view.

Monitoring the
results of actions and
evaluating success in
solving the problem.

Reflecting on group
goals, progress and

achievements.

Making adaptations
to collaborative
goals, plans, or

strategies.

Reflecting on
different computing

solutions.

Evaluating the
emotional aspects of
group members with

regard to mutual
respect and

engagement in group
activities.

Group evaluation
regarding the number

of interactions and
how many different
people interacted.

Preventing lack of
participation and

interactions.

Reflecting on the
motivation of the

group in
programming.

Reflecting on trusts
in programming.

Reflecting on the
group's goals and

progress.

Reflecting on
workflows to check

productivity.

Adapting workflows.

Reflecting on the pros
and cons of Scrum for

collaborative
programming.

Reflecting on group
roles and

communication
protocols.

Adapting group
functions and

communication
protocols.

Reflecting on the
context of

collaborative
programming.


